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One-dimensional wave propagation along an inhomogeneous waveguide, such
as an acoustic horn, a plate strip, a rod, or a beam is considered. The equations of
motion of a generic waveguide are written in "rst order form, and the properties of
the (position-dependent) eigenvalues and eigenvectors of the system are deduced by
considering the symmetry and/or the energetics of the system. The equations of
motion are then transformed to &&wave co-ordinates'' based on the right
eigenvectors of the system, and a perturbation method is employed to study wave
propagation along deterministic, periodic, and random waveguides. Attention is
then turned to wave re#ection at a &&cut-o!' cross-section, and a general result for
the phase of the re#ection coe$cient is derived. The general theory is illustrated by
application to rod and beam examples. The method can be likened to a &&coupled
modes'' approach in which the properties of the eigenvectors (or &&modes'') arising
from symmetry and/or energetics are exploited. ( 1999 Academic Press
1. INTRODUCTION

This work is concerned with wave propagation along an inhomogeneous one-
dimensional waveguide, such as an acoustic horn, a plate strip, a rod, or a beam.
This topic is certainly not a new one, and previous studies have considered wave
evolution, re#ection, and transmission, in various speci"c waveguides, together
with the related topic of the modes of vibration of a "nite system. As described in
what follows, the aim of the present work is to provide a straightforward
methodology for this type of analysis by employing a general &&coupled modes''
approach in conjunction with a study of the system energetics.

Much previous work on wave propagation in an inhomogeneous waveguide
has been related to acoustic horns or ducts. For example, Lighthill [1] has
presented a study of wave propagation along a slowly varying acoustic duct:
it is shown that to a "rst approximation the wave amplitude evolves to preserve
energy #ow, and there is no wave re#ection. For more rapidly varying ducts
signi"cant wave re#ection can occur, and Pierce [2] has summarized earlier
work by Karal [3] and Miles [4, 5] regarding wave transmission across a
fairly rapid change in the duct cross-sectional area. Whereas Lighthill [1] co-
nsidered a one-dimensional longitudinal wave model of the duct, references [4, 5]
0022-460X/99/410131#28 $30.00/0 ( 1999 Academic Press



132 R. S. LANGLEY
present a detailed two-dimensional analysis, and the same two-dimensional
problem is addressed in reference [6] by using the method of matched asymptotic
expansions. The longitudinal wave model of the duct [1] has the same
mathematical form as the equation of a non-uniform rod, and a number of recent
papers [7}10] have considered waves and modes in such systems. The same form of
equation was employed by Scott [11] to study the statistics of wave propagation in
a one-dimensional random medium. References [9, 10] consider the further case of
a non-uniform beam, although in this case the focus is on the vibration modes
rather than wave propagation. In references [1, 7}11] the solution procedure is
based directly on the governing one-dimensional second-order di!erential equation
of a duct, rod, or waveguide, or the one-dimensional fourth-order di!erential
equation of a beam. In contrast, Galanenko [12] has considered wave propagation
in an elastic waveguide by employing a &&coupled modes'' approach, in which the
governing equations are expressed initially in "rst-order form. Galanenko suggests
that although this type of approach has previously been employed in underwater
acoustics (for example reference [13]), reference [12] represents the "rst application
of the method to structural systems. The method allows very general waveguides to
be considered: the cross-sectional motion is expressed in terms of generalized co-
ordinates, which may correspond to physical quantities (as in the case of a rod or
a beam) or to cross-sectional Ritz functions. With regard to an acoustic duct, the
method could therefore encompass either a simple longitudinal wave model, or
a more detailed two-dimensional acoustic analysis, as adopted in references [3}6].

In the present work, the equations of motion of a waveguide are expressed in
"rst-order form and then transformed to &&wave co-ordinates'' by considering the
(position-dependent) eigenvectors and eigenvalues of the system. Various
properties of the eigenvectors and eigenvalues, and hence of the transformed
equations of motion, are deduced by considering the symmetry and/or the
energetics of the system. These properties are then exploited in considering
a perturbation solution of the equations of motion for various cases, which include
a slowly varying waveguide, a periodic waveguide, and a random waveguide.
Special attention is given to the case of wave re#ection at a &&cut-o! '' cross-section,
and it is shown that a result obtained by Scott and Woodhouse [14] for the special
case of internal re#ection in a doubly curved plate strip is in fact a general result.
The method of obtaining the transformed equations of motion owes much to that
proposed by Galanenko, although energetics were not considered in detail in
reference [12]. The results obtained are illustrated by application to a rod and
a beam.

The equations of motion of a waveguide are developed in section 2, which
includes a study of the e!ects of symmetry and energy conservation on the structure
Figure 1. Schematic of an inhomogeneous waveguide.
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of the equations. A perturbation solution to the equations is then presented in
section 3, and this is applied to wave evolution, re#ection, and transmission in
deterministic, periodic, and random waveguides. Wave re#ection at a cut-o!
cross-section is then considered in section 4.

2. WAVEGUIDE EQUATIONS OF MOTION

2.1. GENERAL FORM OF THE EQUATIONS

The present work is concerned with the dynamics of a one-dimensional
waveguide such as a beam, rod, or acoustic tube. A schematic of the waveguide is
shown in Figure 1, where the N]1 vector d (x) represents the set of displacements
which are required to describe the motion at location x and the N]1 vector F(x)
represents the associated set of elastic forces. The motion of the waveguide is taken
to be simple harmonic with frequency u so that all variables are assumed to vary
with time in proportion to the factor exp(iut); this implies that the entries of d and
F represent complex amplitudes which contain information concerning both the
phase and the magnitude of the motion. The displacements d (x) may represent
either the physical displacements of the waveguide cross-section, as in the case of
a simple rod or beam, or generalized co-ordinates for the case of more complex
systems in which the cross-section motion is modelled by using admissible
functions.

Regardless of the physical nature of the waveguide, the governing equations of
motion can always be written in terms of the 2N]1 state vector u (x)"(dT FT)T in
the canonical form

du/dx"Au, (1)

where A (x) is a 2N]2N matrix. The aim of the present paper is to consider the
solution of equation (1) for a range of situations.

Throughout the present work, two speci"c examples will be employed to
illustrate the general results which are obtained. The "rst of these example concerns
the axial motion of an elastic rod, for which the governing di!erential equation has
the well-known form [15]

d
dxAES

dw
dxB#oSu2w"0, (2)

where w is the axial displacement and E, S, and o are respectively the Young's
modulus, the cross-sectional area, and the density. Equation (2) can be written in
the form of equation (1) by de"ning

u"A
w

ES (dw/dx)B , A"A
0

!oSu2

1/(ES)
0 B. (3)
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By an appropriate change in notation, equations (2) and (3) can also be taken to
represent a tensioned string or the propagation of the lowest cross-sectional mode
of an acoustic tube. In the case of an acoustic tube, the form of the matrix
A explains the phenomenon of the &&dual horn'': as noted by Ram and Elhay [10];
Benade [16] stated &&consider a pair of horns such that the product A

1
A

2
of their

cross-sectional areas is a constant from one end to the other...If the small ends of
both of these horns are closed o!, the two air columns turn out to have identical
natural frequencies''. Replacing S by 1/S in equation (3) results in an identical
acoustic system providing the pressure and displacement variables (the analogies of
w and ESdw/ds) are interchanged: thus a horn with a cross-sectional variation S (x)
and a blocked left-hand end will have the same natural frequencies as a horn with
a cross-sectional variation 1/S(x) and a blocked right-hand end.

The second speci"c example concerns a pre-compressed beam which rests on an
elastic foundation. In this case the equation of motion has the form [15]

d
dx2AEI

d2w
dx2B#

d
dxAC

dw
dxB!(oSu2!K)w"0, (4)

where w is the lateral de#ection, and in addition to the symbols previously de"ned,
I is the second moment of area, C is the pre-compression, and K is the foundation
sti!ness per unit length. Equation (4) can be cast into the form of equation (1) by
employing the following notation:

u"A
w

dw/dx

!(d/dx)[EI(d2w/dx2)]!C(dw/dx)

EI(d2w/dx2) B ,

A"A
0 1 0 0

0 0 0 1/(EI)

!oSu2#K 0 0 0

0 !C !1 0 B . (5, 6)

As a preliminary to considering the solution of equation (1), the properties of the
matrix A are considered in sections 2.2}2.4.

2.2. SYMMETRIC SYSTEMS

A "nite section of the waveguide covering the region x to x#X is shown in
Figure 2. The terms (d

L
F

L
) and (d

R
F
R
) which appear in this "gure represent the

displacements and elastic forces at the left- and right-hand sides of the section
respectively. The dynamic sti!ness matrix D(x, X) and the transfer matrix T(x, X)



Figure 2. A "nite section of the waveguide.
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of the section are de"ned by the equations

A
!F

L
F
R
B"DA

d
L

d
R
B, A

d
R

F
R
B"TA

d
L

F
L
B (7, 8)

It follows that D can be expressed in terms of T, and vice versa [17]. The vast
majority of physical systems obey the principle of reciprocity, which implies that
the dynamic sti!ness matrix D is symmetric; in this case it can readily be shown that
the transfer matrix T is symplectic, which means that it has the property [17, 18]

TTJT"J, J"A
0

!I
I
0B, (9, 10)

where I is the N]N identity matrix. Now by noting that T(x, 0)"I, where in this
case I represents the 2N]2N identity matrix, it follows from equations (1) and (8)
that

A (x)"
d

dX
T(x, X)D

X/0
. (11)

By di!erentiating equation (9) with respect to X and then placing X"0, it then
follows that a symmetric system (i.e. a system with a symmetric dynamic sti!ness
matrix D) has the property

JA"!ATJ, (12)

which implies that the matrix JA is symmetric. As will be discussed in section 2.4,
this property has signi"cant implications regarding the structure of the eigenvalues
and eigenvectors of A, and this in turn re#ects upon the physical nature of wave
motion in the system. In particular, it is found that waves occur in left- and
right-going pairs, which is consistent with the principle of reciprocity and the
symmetry of D.

2.3. ENERGY FLOW, ENERGY CONSERVATION AND ENERGY DENSITY

The time-average energy #ow P(x) through the waveguide at location x can be
written as P (x)"Svelocity]forceT. The force vector has complex amplitude F,
and given that the motion is harmonic with frequency u, the velocity vector has
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complex amplitude iud. The time-averaged energy #ow thus has the form

P(x)"(1/2)ReMiu d*TFN"(1/4)iu u*TJu, (13)

where J is given by equation (10). If the system is conservative then the energy #ow
must be constant, so that

d
dx

P (x)"(1/4)iu A
d
dx

(u*T)Ju#u*TJ
d
dx

(u)B"(1/4)iu u*T[A*TJ#JA]u"0.

(14)

Equation (14) must hold for any value of the state vector u, and hence it can be
deduced that a conservative system must have the property

JA"!A*TJ. (15)

In this case the matrix JA is Hermitian rather than symmetric, and it can be shown
that the transfer matrix T of any section of the waveguide is K-unitary rather than
symplectic [17, 18], so that T*TJT"J. The e!ect of this property on the
eigenvalues and eigenvectors of A is discussed in section 2.4. As an aside, it can be
noted from equations (12) and (15) that A must be real if the system is to be both
symmetric and conservative.

By considering the energy #ow in a lightly damped system it is possible to derive
an expression for the kinetic energy density of the waveguide. A small amount of
mass proportional damping can be modelled by considering the vibration
frequency u to be replaced by the complex quantity u(1!ig/2), where g is the loss
factor. The matrix A then becomes A

0
!(igu/2)LA

0
/Lu, where A

0
is the matrix

associated with the undamped system. By noting from equation (15) that J (LA
0
/Lu)

is a Hermitian matrix, equation (14) can in this case be written in the form

d
dx

P(x)"(1/4)gu2u*TJ(LA/Lu)u, (16)

where the subscript on A
0

has been dropped for ease of notation. Now for mass
proportional damping it is known that the power dissipated by a small element dx
of the waveguide can be written as 2ug¹M dx where ¹M is the time-averaged kinetic
energy density; the power dissipated can also be written as !(dP/dx)dx, and thus it
follows from equation (16) that the kinetic energy density is given by

¹M "!(1/8)uu*TJ(LA/Lu)u. (17)

This expression can be compared with a result derived in reference [17] for the
kinetic energy stored in a "nite section of a waveguide. Equation (5.8) of reference
[17] expresses the kinetic energy in terms of the transfer matrix T: if the length of
the section, dx say, is allowed to tend to zero so that T+I#Adx, then equation
(17) of the present work is recovered. Furthermore, it can readily be con"rmed that
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for each of the example systems presented in section 2.1, equation (17) yields the
anticipated result ¹M "(1/4)u2oS Dw D2.

2.4. EIGENVALUES AND EIGENVECTORS OF A

If the system is symmetric, so that A satis"es equation (12), then it follows that

Au
j
"j

j
u
j
N (Ju

j
)TA"!j

j
(Ju

j
)T. (18)

This means that any eigenvalue j
j
of A with right eigenvector u

j
is accompanied by

an eigenvalue !j
j
with left eigenvector Ju

j
. Physically, the eigenvalues of A are the

wavenumbers associated with wave motion in a homogeneous waveguide: a purely
imaginary value of j

j
represents a propagating wave, while a non-zero real part will

lead to either exponential growth or exponential decay. Equation (18) implies that
the waves occur in left- and right-going pairs, which is, of course, fully consistent
with the symmetry of the system.

If the system is conservative, so that equation (15) is applicable, then it follows
that

Au
j
"j

j
u
j
N (Ju*

j
)TA"!j*

j
(Ju*

j
)T. (19)

In this case the eigenvalues occur in paris of the form (j
j
, !j*

j
); the right

eigenvector associated with j
j
is u

j
and the left eigenvector associated with !j*

j
is

Ju*
j
. It can be noted that if j

j
is purely imaginary then j

j
"!j*

j
and the &&pair'' of

waves reduces to a single propagating wave. Certain aspects of the energy #ow in
a conservative system can investigated by expanding the state vector u in terms of
the right eigenvectors u

j
, so that

u"+
j

b
j
u
j
, (20)

where b
j
are the appropriate expansion coe$cients. The energy #ow follows from

equation (13) in the form

P"+
j

+
r

b*
j
b
r
P
jr
, P

jr
"(1/4)iuu*T

j
Ju

r
. (21, 22)

Now it can readily be shown that P
jr
"0 unless j

r
"!j*

j
, which means that energy

#ow can arise only as a result of interaction between two members of an eigenvalue
pair (j

j
, !j*

j
). In the special case of a propagating wave with j

j
purely imaginary,

the &&pair'' reduces to a single wave with P
jj
O0, so that the energy #ow is of course

non-zero. Equivalent results regarding energy #ow interaction have been derived
previously in references [17, 19] via a transfer matrix analysis.

As a "nal comment in this section, it can be noted that if the system is symmetric
and conservative, then both equations (18) and (19) apply, and eigenvalue groups of
the type ($j

j
$j*

j
) arise. If j

j
is either purely real or purely imaginary then the

group of four eigenvalues reduces to just two distinct values (j
j
, !j

j
).
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2.5. WAVE AMPLITUDE EQUATIONS OF MOTION

Were the matrix A to commute with its integral over x, then equation (1) could be
solved very simply by employing a matrix exponential integrating factor. In
general, A does not have this property, and a simple closed-form solution to
equation (1) cannot be found. A form of the equation which is more amenable to the
development of approximate analytical solutions can be derived by applying the
change of variables represented by equation (20), so that

u"Ub, (23)

where the columns of the matrix U contain the right eigenvectors of A, and b is
a new state vector which contains the amplitudes of the eigenvectors. Given that the
eigenvectors provide a description of wave motion in a homogeneous waveguide,
the entries of b can be conveniently referred to as (complex) wave amplitudes. By
substituting equation (23) into equation (1), it can be shown that b must satisfy the
di!erential equation

db/dx"Kb!U~1(dU/dx)b, (24)

where K is a diagonal matrix containing the eigenvalues of A. Now the second term
on the right of this equation can be re-expressed by noting that

AU"UK NKU~1(dU/dx)!U~1(dU/dx)K"(dK/dx)!U~1(dA/dx)U. (25)

This yields

[U~1(dU/dx)]
jr
"[U~1(dA/dx)U]

jr
/(j

r
!j

j
), jOr, (26)

where the notation [X]
jr

indicates the jrth entry of the matrix X. The o!-diagonal
contributions to the right hand side of equation (24) can thus be expressed very
simply in terms of the rate of change of the matrix A. The diagonal components are
less straight forward, but progress can be made by noting from section 2.3 that for
a conservative system the left eigenvector associated with j

j
is Ju*

j{
, where j@ is such

that j
j{
"!j*

j
. This implies that the jth row of U~1 has the form u*T

j{
J/(u*T

j{
Ju

j
) so

that

[U~1(dU/dx)]
jj
"u*T

j{
J(du

j
/dx)/(u*T

j{
Ju

j
). (27)

Now at this stage there is a degree of ambiguity regarding the de"nition of the wave
amplitudes b, since no scaling convention for the mode shapes u

j
has as yet been

de"ned. The form of equation (27) suggests that a scaling of the type
u*T
j{

Ju
j
"constant would be appropriate, and in fact it follows from equation (22)

that the choice

u*T
j{

Ju
j
"!4ic

j
/u N [U~1(dU/dx)]

jj
"(iuc

j
/4)u*T

j{
J(du

j
/dx), (28)
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where c
j
"$1 is particularly convenient, since this gives P

jr
"c

j
for all non-zero

energy #ows. The term c
j
must be included in this result because it is possible to

apply equation (28) only for either c
j
"1 or c

j
"!1: for example, a wave which

propagates energy to the right cannot be scaled to give c
j
"!1.

Equations (24), (26) and (28) together constitute the equations of motion for the
wave amplitudes b. It can be noted that the motion of a physical system will be
determined by the solution of equation (24) under the appropriate boundary
conditions. For the free vibrations of a "nite system, for example, the solution of
equation (24) subject to the boundary conditions at either end of the system will
yield the natural frequencies and normal modes. The form of the eigenvectors u

j
in

equation (20) (or, physically, the wave motion in the system) is independent of any
boundary conditions, but of course the way in which these eigenvectors combine to
produce the physical response is strongly determined by the boundary conditions.

The approximate solution of equation (24) for the case of slowly varying
waveguide is considered in the following section. The case of a rapidly varying
waveguide is considered in section 4, together with the issue of wave re#ection at
a cut-o! cross-section.

3. WAVE PROPAGATION IN A SLOWLY VARYING WAVEGUIDE

3.1. PERTURBATION SOLUTION OF THE WAVE AMPLITUDE EQUATIONS

The properties of the waveguide can be considered to be slowly varying if the
second term of the right-hand side of equation (24) is relatively small. In more
detail, if O(dU/dx)"aO(U) then the term can be considered small if O(a/j

j
);1,

which implies that the lengthscale of the waveguide variation is large in comparison
to a wavelength. Under this condition, equation (24) can be rewritten in the form

db/dx"Kb#eBb, eB"!U~1 (dU/dx), (29, 30)

where O(B)"O(K) and e is a small parameter. A solution to equation (29) can be
sought by expanding b in the form of a perturbation series so that

b"b
0
#eb

1
#e2b

2
#2. (31)

If equation (31) is substituted into equation (29) and like powers of e are equated
then the following hierarchy of equations is obtained:

db
0
/dx"Kb

0
, db

n
/dx"Kb

n
#Bb

n~1
, n'0. (32, 33)

This yields

b
0
"C(x)c, b

n
"C(x)P

x

0

C~1(x@)B(x@)b
n~1

(x@) dx@ n'0, (34, 35)
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where the constant vector c is determined by the spatial boundary conditions, and

C(x)"expAP
x

0

K(x@) dx@B. (36)

Equations (34}36) are applied to a number of example cases in the following
sections.

3.2. THE EVOLUTION OF A PROPAGATING WAVE

If the eigenvalue j
j

is purely imaginary with j
j
"!ik

j
, then the jth wave

component represents a right-propagating wave with wavenumber k
j
. The

evolution of this wave along a slowly varying waveguide can be investigated by
applying equations (34}36) with c

j
"1 and c

r
"0 for rOj; this implies that only

the jth wave component is present at x"0, and the wave has an initial complex
amplitude of unity. In applying equations (34) and (35) to this case, it can be noted
initially that the integrand of equation (35) will always contain a term of the form
C~1(x@)B(x@)C(x@). The jrth component of this matrix can be written as

[C~1(x@)B(x@)C(x@)]
jr
"[B(x@)]

jr
expGP

x{

0

[ik
j
(xA)#j

r
(xA)]dxAH. (37)

For jOr the exponential term in this expression will oscillate in sign as x@ is varied;
by de"nition the term B(x@) will change at a relatively slow rate (O(a/j

j
);1 in the

notation of the previous section), and this implies that the o!-diagonal terms in
equation (35) will integrate to produce a near zero result. If only the diagonal
entries are retained in equation (37), i.e. j"r so that j

r
"!ik

j
, then equations

(31)}(36) yield

b
j
(x)"!

j
(x)expG!P

x

0

[U~1(dU/dx@)]
jj
dx@H, b

r
(x)"0 rOj. (38, 39)

This result could also have been derived directly from equation (24) by neglecting
the coupling between the wave amplitudes b; the justi"cation for this
approximation would of course require a similar argument to the one presented
here. Now by noting that j@,j for a propagating wave, it follows from equation (28)
that

[U~1(dU/dx)]
jj
"(iuc

j
/4)u*T

j
J (du

j
/dx)"(iuc

j
/4)uT

j
J (du*

j
/dx). (40)

This implies that the exponent in equation (38) is purely imaginary, and hence the
modulus of b

j
is constant, although the phase may vary to a greater extent than that

predicted by the simple &&wavenumber'' term C
j
(x). In view of equations (21), (22),

and (28), this result amounts to conservation of energy #ow in the propagating
wave, with no transfer of energy to any other wave component; this result is in
agreement with the principles of ray acoustics [2] and is well known for simple
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waveguides [1]. The case in which the o!-diagonal components of equation (37) are
non-negligible, so that energy is transferred to other wave components, is
considered in the following section.

A straightforward example of the present analysis is a!orded by considering an
elastic rod (or equivalently an acoustic tube) of varying cross-section S. In this case
the matrix A is given by equation (3), and the eigenvalues and normalized
eigenvectors have the form

K"A
ik
0

0
!ikB, U"(2ESuk)~1@2A

1
ikES

1
!ikESB, (41, 42)

where k"uJo/E. It follows that

U~1(dU/dx)"![(dS/dx)/(2S)] A
0
1

1
0B. (43)

In this case equation (38) yields b
j
"exp(!ik

j
x) so there is no change in phase over

and above that associated with the wavenumber k
j
. Since the modulus of b

j
is

conserved, it follows from equation (42) that the physical displacement w of the
system must vary in proportion to [S (x)]~1@2, a result which is well known for an
acoustic horn [1]. The accuracy of this approximate result can be investigated
numerically by considering the case

S (x)"S
0
#(1/2)(S

1
!S

0
)erfc[!(x!x

0
)/(J2p)], (44)

where erfc is the complementary error function. Here the cross-sectional area
changes from very nearly S

0
to very nearly S

1
over the range

(x
0
!3p)(x((x

0
#3p); the ratio nj"3kp/n gives an indication of the number

of wavelengths taken to e!ect the change, while S
R
"S

1
/S

0
gives a measure of the

magnitude of the change.
A typical example of wave propagation through the system is shown in Figure 3,

as obtained by direct numerical integration of equation (1). The initial conditions
consist of a left travelling wave of unit amplitude ( Db

1
D"1) at the point x"0, and

the waveguide parameters are nj"1 and S
R
"2. Because of the selected initial

condition, the physical situation is that a left travelling wave enters the system at
kx"12n and is partially transmitted and partially re#ected by the change in the
waveguide cross-section (centred on kx

0
"6n); the initial condition at x"0

represents the transmitted wave. The results shown in the "gure are the real part of
the physical displacement of the system w, together with the function
[S(x)/S

0
]~1@2*the foregoing theory implies that w should scale in proportion to

[S(x)/S
0
]~1@2. In terms of the wave amplitudes, it is found that Db

1
D"1 at kx"0

(by virtue of the imposed initial condition) and that Db
1
D"1)0008 at kx"12n. Were

the wave to propagate without any energy transfer to the right-going wave, as
predicted by equation (38), then clearly b

1
would have unit amplitude at all points

of the waveguide*the value of Db
1
D at kx"12n is a measure of the validity of the



Figure 3. Wave propagation through a change of cross-sectional area in a rod, nj"1 and S
R
"2.

The plot shows: (a) the real part of the displacement, Re(w); (b) the square root of the area variation,
(S/S

0
)~1@2.

Figure 4. Contours of the incident wave amplitude Db
1
D required to produce a transmitted wave of

unit amplitude in a rod, for various combinations of nj and S
R
. (a) Db

1
D"1)05; (b) Db

1
D"1)01;

(c) Db
1
D"1)001.
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approximate theory. A contour plot of this quantity is shown in Figure 4 for a range
of values of nj and S

R
. The selected range of nj and S

R
represents a fairly severe test

of the theory, since in most cases the waveguide undergoes a signi"cant change in
cross-section within the space of wavelength. Nonetheless, the error (i.e., the
di!erence in Db

1
D from unity at kx"12n) is very small over a signi"cant portion of

the diagram. As discuss in the following section, higher order terms in equations
(34) and (35) can be used to estimate the wave re#ection and transmission
coe$cients at a more rapid change in the waveguide cross-section.

3.3. REFLECTION AND TRANSMISSION OF A PROPAGATING WAVE

If the rate of change of the waveguide properties is such that signi"cant energy
transfer between the various wave components can occur, then a more detailed
analysis of the system is required. The exact solution to equation (24) will have the
form

b(X)"W(0, X)b(0), (45)

where W is the transfer matrix (expressed in terms of the wave amplitudes rather
than the state vector u) of that section of the waveguide which lies between x"0
and x"X. It should be emphasized that W di!ers from the matrix T which
appears in equation (8), and in particular W may not be symplectic or K-unitary
when expressed in terms of wave amplitudes. In what follows, it will be assumed
that the waveguide which lies outside the region 0(x(X is homogeneous, and
the aim is to investigate the wave scattering properties of the section 0(x(X. To
this end, equation (45) can be partitioned in the form

A
b
~

(X)
b
`

(X)B"A
W

11
W

21

W
12

W
22
BA

b
~

(0)
b
`

(0)B, (46)

where b
~

contains those wave components which either propagate energy to the
left or decay to the left, and conversely b

`
contains those wave components which

either propagate energy to the right or decay to the right. If a left travelling wave is
incident from the region x'X, then this wave will be partly re#ected and partly
transmitted; for x(0 the resulting wave motion must either propagate energy to
the left or decay to the left, and this gives the boundary condition b

`
(0)"0.

Equation (46) then yields

b
~

(0)"W~1
11

b
~

(X), b
`

(X)"W
21

W~1
11

b
~

(X), (47a, b)

where b
~

(X) can be speci"ed in terms of the incoming wave. Now for a slowly
varying waveguide the transfer matrix which appears in equation (46) can be
expanded in the form of a perturbation series so that

W"W
(0)
#eW

(1)
#e2W

(2)
#2. (48)
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where W
(n)

represent the nth order transfer matrix. It then follows directly from
equations (34) and (35) that

W
(0)
"C(x), W

(n)
"C(x)P

x

0

C~1(x@)B(x@)W
(n~1)

(x@) dx@, n'0, (49, 50)

and, to second order, equation (47b) can be written in the form

b
`

(X)"MeW
(1)21

#e2[W
(2)21

!W
(1)21

C~1
11

W
(1)11

]NC~1
11

b
~

(X). (51)

Furthermore, it follows from equations (47a) and (48) that

b
~

(0)"MI!eC~1
11

W
(1)11

#e2(C~1
11

W
(1)11

)2!e2C~1
11

W
(2)11

NC~1
11

b
~

(X). (52)

Equations (49}52) are applied to a rod and a beam respectively in the following
sections.

3.3.1. Application to a rod

Equations (49}52) can be applied to a rod by noting that the entries of the
matrices C and B can in this case be deduced from equations (41) and (43). The
second order contribution to equation (51) is zero, and the "rst order component
yields

b
2
(X)"b (X)exp(!2ikX)b

1
(X), b (x)"P

x

0

(S@/2S)exp(2ikx@) dx@, (53, 54)

where S@"dS/dx@ and the notation of section 3.2 (b
1
,b

~
and b

2
,b

`
) has been

adopted. In contrast, the "rst order contribution to equation (52) is zero, and the
terms of zero and second order give

b
1
(0)"A1!P

X

0

(S@/2S)b (x@)exp(!2ikx@) dx@B exp(!ikX)b
1
(X). (55)

Equations (53) and (55) can each be used to obtain an improved estimate of the
wave amplitude b

1
(X) for the case considered in section 3.2, i.e., a left travelling

wave of unit amplitude at x"0, so that b
1
(0)"1. The simplest estimate arises by

considering equation (53) in conjunction with the energy #ow condition
Db

1
D2!Db

2
D2"1, which yields Db

1
(X)D"1#DbD2/2. A more accurate second order

approximation is furnished directly by the inverse of equation (55). Results yielded
by these two estimates are shown in Figure 5 for the example system considered in
section 3.2, with S

r
"3. It can be seen from Figure 5(a) that the magnitude of b

1
is

well predicted by the second order approximation, while the result based on
equation (53) is poorer but generally within 1)2% of the exact value. The phase of b

1
as predicted by equation (55) is compared with the exact result in Figure 5(b), and
again good agreement is obtained.



Figure 5. (a) Incident wave amplitude Db
1
D required to produce a transmitted wave of unit

amplitude in a rod for the case S
R
"3. The three curves shown are: (a) the exact result; (b) the

approximate result yielded by equation (53); (c) the approximate result yielded by equation (55).
(b) Phase of the incident wave relative to the transmitted wave for the case considered in Figure 5(a).
The two curves shown are: (a) the exact result; (b) the approximate result yielded by equation (55).
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3.3.2. Application to a beam
The equations of motion for a pre-compressed beam which rests on an elastic

foundation are given by equations (4}6). The four eigenvalues j
j

of the matrix
which appears in equation (6) yield the four wavenumbers k

j
of the beam in the

form k
j
"ij

j
. In describing the behaviour of the beam, it is convenient to introduce

the two non-dimensional parameters c
K
"K/oSu2 and c

C
"C/oSu2. It can be

shown that (i) for c
K
(1 two of the wavenumbers are real, (ii) for 1(c

K
(1#c2

C
/4

all four wavenumbers are real, and (iii) for c
K
'1#c2

C
/4 none of the wavenumbers

are real. This behaviour is shown in Figure 6 for the particular case c
C
"2. The

present section is concerned with wave propagation in a non-uniform beam with
c
C
"2 and c

K
(1 so that there are always two propagating waves and two

evanescent waves: the special case of transition through the cut-o! point
c
K
'1#c2

C
/4"2 is considered in section 4.

In what follows, the sti!ness of the elastic foundation is taken to vary with
position x so that the non-dimensional sti!ness c

K
(x) varies in accordance with

equation (44), albeit with S replaced by c
K

and S
0

and S
1

replaced by c
K0

and c
K1

respectively. As in section 3.2, the parameter nj"3kp/n is used to give an
indication of the number of wavelengths taken to e!ect the change in c

K
, although

in the present case the wavenumber k varies with x*the value of k at c
K0

is taken as
the reference in de"ning nj . Three cases are considered here, these being
(c

K0
, c

K1
, nj)"(0)9, 0)0, 0)2), (0)9, !50, 0)2) and (0)9, !50, 1)0), where it can be

noted that a negative value of c
K

corresponds to mass loading rather than a spring
support. The boundary conditions are taken to be b

`
(0)"0 together with a left

travelling incident wave of unit amplitude at x"X, so that b
~

(X) is speci"ed; the
remaining wave components are then given by equations (47}52). The amplitude of
the right travelling wave at x"X (i.e., the re#ected wave) is given in Table 1 for
each of the three cases considered. The exact result is shown (obtained by direct
numerical integration of the governing equations), together with successive
approximations obtained by including terms of up to eighth order in equations
(47b) and (48). Also shown in Table 1 are the corresponding results for the
amplitude of the transmitted wave, obtained in this case from equations (47a) and
(48). The displacement of the system is shown in Figure 7 for the third example
case*it is clear that although the transmission coe$cient is close to unity when
expressed in terms of the wave amplitudes, the variation in the beam properties has
a marked e!ect on the physical de#ection.

One obvious feature of the results shown in Table 1 is that, unlike the rod
example, the transmitted and re#ected waves are in most cases poorly predicted by
a second order approximation. This can be traced to the e!ect of the evanescent
waves on the structure of the transfer matrix W. This is shown in Figures 8 and 9 for
the case (c

K0
, c

K1
, nj)"(0)9, !50, 1)0). The results shown relate to the pertinent

partitions of the matrix C~1W; for a uniform beam the 2]2 partition (C~1W)
11

is
equal to the identity matrix whereas the 2]2 partition (C~1W)

21
is equal to zero.

Clearly, the matrix entries which relate to the evanescent waves di!er considerably
from the uniform beam case, and the series represented by equation (48) must be
carried to sixth or even eighth order before these terms are accurately captured.
Having said this, it can be noted that the case considered relates to a fairly severe



Figure 6. (a) The imaginary part of the eigenvalues (i.e. the real part of the wavenumbers) for
a beam on an elastic foundation with c

C
"2. The symbol k

0
represents the wavenumber for a simple

beam, EIk4
0
"oSu2. (b) The real part of the eigenvalues (i.e., the imaginary part of the wavenumbers)

for a beam on an elastic foundation with c
C
"2.
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TABLE 1

Re-ection and transmission coe.cients for a beam on elastic foundations; the three
cases are (c

K0
, c

K1
, nj)"(0)9, 0)0, 0)2), (0)9, !50, 0)2), and (0)9, !50, 1)0), and n

represents the order of the perturbation expansion

DrD 1/DtD

n Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

1 0)0418 1)0522 0)2341 0)9888 0)0544 0)0813
2 0)0347 0)0745 0)0121 1)00217 1)2612 1)0759
3 0)0374 0)3931 0)0813 1)00044 0)9457 0)9957
4 0)0372 0)2283 0)0549 1)00074 1)0900 1)0111
5 0)0373 0)2929 0)0636 1)00071 1)0335 1)0019
6 0)0373 0)2781 0)0623 1)00071 1)0472 1)0027
7 0)0373 0)2835 0)0627 1)00071 1)0425 1)0020
8 0)0373 0)2827 0)0627 1)00071 1)0432 1)0021
Exact 0)0373 0)2831 0)0627 1)00070 1)0427 1)0019

Figure 7. Wave propagation through a change in properties for a beam on an elastic foundation
with c

C
"2 and (c

K0
, c

K1
, nj)"(0)9, !50, 1)0).
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change in the beam properties, as can be seen from Figure 7. The change is less
severe for the "rst example shown in Table 1, and in this case a second order
approximation yields a good estimated of the re#ected wave amplitude.



Figure 8. The four entries of the matrix partition (C~1W)
11

plotted as a function of the perturba-
tion order n, de"ned such that terms of order en are retained in the analysis. The horizontal lines
indicate the exact values of the matrix partition. c

C
"2 and (c

K0
, c

K1
, nj)"(9)0, !50, 1)0).

Figure 9. The four entries of the matrix partition (C~1W)
21

plotted as a function of the
perturbation order n, de"ned such that terms of order en are retained in the analysis. The horizontal
lines indicate the exact values of the matrix partition. c

C
"2 and (c

K0
, c

K1
, nj)"(9)0, !50, 1)0).
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3.4. WAVE PROPAGATION IN A PERIODIC SYSTEM

The foregoing approximate theory can be applied to a system which has
a periodic variation in properties, i.e., a system which can be considered to be
composed of a number of identical units which are connected end to end. In this
case, the wave bearing characteristics of the system are described by the eigenvalues
of the transfer matrix of a single unit. For the speci"c example of a rod with
a periodic variation in cross-sectional area, the eigenvalues (k say) of the transfer
matrix satisfy the equation [20]

k2!(1/¹
u
#1/¹*

u
)k#1"0, (56)

where ¹
u

is the wave transmission coe$cient of the unit*if the 2]2 transfer
matrix W is expressed in terms of wave amplitude coordinates, then ¹

u
"1/=

11
.

A second order approximation to ¹
u
can be deduced from equation (55) in the form

¹
u
"A1!P

X

0

(S@/2S)b(x@)exp(!2ikx@) dx@Bexp(!ikX), (57)

where b(x) is given by equation (54). An alternative approximation, based on the
principle of energy #ow conservation combined with a "rst order estimate of the
wave re#ection coe$cient, is given by

¹
u
"exp(!ikX)J1!Db(X)D2. (58)

In this the result, the magnitude of ¹
u

is deduced from the magnitude of the
re#ection coe$cient (given by DbD), while the phase is taken to be that of a uniform
waveguide. To consider the speci"c example of a sinusoidal variation in cross-
sectional area, so that S"S

0
(1#a

0
sin k

0
x), it follows from equation (54) that

b (x)"P
X

0
G

a
0
k
0
cos(k

0
x@)

2[1#a
0
sin(k

0
x@)]H exp(2ikx@) dx@, (59)

with X"2n/k
0
. Equation (56) yields an eigenvalue pair with the structure (k, 1/k),

where k is conventionally expressed in terms of an attenuation constant d
a

and
a phase constant e

p
in the form k"exp(ie

p
#d

a
). For a uniform waveguide with

a
0
"0, the eigenvalues are just k"exp($i2nk/k

0
) so that d

a
"0 and e

p
increases

linearly with k*when phase wrapped over the range 0 to n, the plot of e
p

against
k has the appearance of a saw-tooth curve. In contrast, exact and approximate
results for the attenuation and phase constants are shown in Figure 10 for the
non-uniform case a

0
"0)4. It can be seen that the results based on equation (57)

represent a good estimate of the phase constant and a somewhat less accurate
estimate of the attenuation constant. The results based on the lower order
approximation, equations (58) and (59), also provide a good estimate of the
behaviour of the phase and attenuation constants. By performing a Taylor series
expansion of the denominator of equation (59), it is clear that the structural



Figure 10. (a) The phase constant e
p

for a periodic rod. The three curves shown correspond to:
(a) the exact result; (b) the result yielded by equation (57); (c) the result yielded by equation (58). To
distinguish the curves, for 0)k/k

0
)1, curve (c) is uppermost, curve (a) is the middle curve, and curve

(b) is the lower curve. For 1)k/k
0
)1)5, curve (b) is uppermost. (b) The attenuation constant d

a
for

a periodic rod. The three curves shown correspond to (a) the exact result; (b) the result yielded by
equation (57); (c) the result yielded by equation (58). The curves are ordered as per Figure 10(a).
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periodicity will have most e!ect for frequencies with k"nk
0
/2, where n is an

integer. It is also clear that the magnitude of the e!ect will decrease with increasing
n, and this behaviour is visible in Figure 10. Thus, a low order approximate analysis
of the present type can readily predict the key features of the periodic system
behaviour.

3.5. WAVE PROPAGATION IN A RANDOM SYSTEM

There has been much previous interest in the statistics of wave propagation in
random media, with application to both solid-state physics (see e.g., reference [13])
and applied mechanics (see, e.g., reference [22]). Scott [11] has considered the
propagation of waves in a random waveguide with the governing equation

d2w/dx2#[k2#N(x)]w"0, (60)

where N(x) is a stationary Gaussian random process with zero mean. Equation (60)
has the form of equation (2), and it can be readily be cast into the form of equation
(3) to allow application of the present theory. It follows that in this case

b(x)"(4k2)~1P
x

0

(LN/Lx@)exp(2ikx@) dx@ (61)

For small b equation (58) is valid, and it follows that the transmission coe$cient of
a length ¸ of the waveguide has the property

E[ D¹
u
D2]"1!E[ Db (¸) D2], (62)

where E[ ] represents the expected value. Equation (61) implies that

E[ Db(¸)D2]"(4k2)~2P
L

0
P

L

0

(LN/Lx
1
)(LN/Lx

2
)exp[2ik(x

1
!x

2
)]dx

1
dx

2
, (63)

and if ¸ is much greater than the correlation length of N then it follows that

E[ D¹
u
D2]"1!(4k2)~1S

NN
(2k)¸, (64)

where S
NN

(k) is the spectral density of N(x). It can be noted that equation (64) can
also be derived from the second order approximation to ¹

u
, equation (57).

Equation (64) will be valid only if the condition (4k2)~1S
NN

(2k)¸;1 is met, since
the foregoing derivation is based on a low order perturbation expansion of the
system transfer matrix. For a very long waveguide this condition will not hold, even
though the waveguide is considered to be weakly disordered so that (4k2)~1S

NN
(2k)

is a small parameter. For a long system composed of M statistically independent
sections of length ¸, it can be shown that the transmission coe$cient ¹ has the
M
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property (e.g. equation (8) of reference [22])

ln D¹
M
D2"M ln D¹

u
D2#O(M1@2), (65)

and thus

E[ln D¹
M

D2]+!(4k2)~1S
NN

(2k)M¸. (66)

It is known that for large M the statistical distribution of ln D¹
M
D2 becomes

Gaussian, and furthermore one-parameter scaling applies, so that the variance is
equal to twice the mean value [23]. Equation (66), in conjunction with a one-
parameter Gaussian distribution for ln D¹

M
D2, is in full agreement with equation

(3.27) of reference [11]. It is interesting to note that the reduction in transmission
due to irregularity is dominated by the spectral component of N(x) which has twice
the homogeneous wavenumber k; this is consistent with the analysis of section 3.4,
where it was shown that periodicity with wavenumber k

0
produces greatest e!ect

when k"k
0
/2.

For more general random waveguides, equation (52) may be used in place of
equation (57) or (58) to develop the transmission properties of a section of length ¸,
where ¸ is short enough to ensure that the perturbation series is accurate. If
¸ exceeds the correlation length of the random variations, then the transmission
properties of a section of length M¸ can be analyzed by considering M sequential
uncorrelated sections of length ¸. This analysis will lead to the consideration of the
statistics of the product of M uncorrelated transfer matrices, and this problem is
addressed in reference [24, 25] for example.

4. WAVE REFLECTION AT A CUT-OFF CROSS-SECTION

The foregoing analysis has considered wave propagation, transmission, and
re#ection in an inhomogeneous waveguide; thus far it has been assumed that waves
can propagate along all parts of the waveguide, and the aim has been to estimate
the spatial evolution of the wave amplitudes. In some situations, however, a change
in the waveguide properties can lead to a fundamental change in the nature of the
wave motion, and in this case the previous analysis is not applicable. One example
of this type of behaviour is shown in Figure 6 for the case of a beam on an elastic
foundation. For c

K
(2 there are four propagating waves, whereas for c

K
'2

there are four evanescent waves. The point c
K
"2 represents a cut-o! cross-section,

in the sense that wave propagation to the right of this point cannot occur.
Clearly, an incident right propagating wave will be fully re#ected at c

K
"2,

and the phase of the re#ected wave is of interest. In this section, a general analysis of
wave re#ection at a cut-o! cross-section is presented, and it will be assumed
without loss of generality that the x co-ordinate is aligned such that x"0 at the
cut-o! point.

When expressed in terms of wave amplitudes, the equations of motion of an
inhomogeneous waveguide are given by equation (24), and the o!-diagonal
coe$cients which appear in this equation are given by equation (26). Equation (26)
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can also be written in the form

[U~1(dU/dx)]
jr
"Q

jr
/(j

r
!j

j
), Q

jr
"[u*T

j{
J(dA/dx)u

r
]/(u*T

j{
Ju

j
), jOr,

(67, 68)

where, as de"ned in section 2.5, u
r

is the right eigenvector associated with the
eigenvalue j

r
, and u

j{
is the right eigenvector associated with the eigenvalue !j*

j(for a propagating wave !j*
j
"j

j
, so that j@"j). Now a cut-o! cross-section is

characterized by the fact that two eigenvalues associated with propagating waves
coalesce to produce a repeated eigenvalue, as can be seen in Figure 6. It follows
from equation (67) that the coupling terms between two such waves will become
very large near to the cut-o! point (where j

r
+j

j
); if the scaling represented by

equation (28) is adopted then the diagonal terms on the right sides of the equations
of motion will remain small, and the coupling terms will become dominant as
j
r
Pj

j
.

The detailed behaviour of the coupling terms in the vicinity of the cut-o! point
can be determined by noting initially that Q

jr
PQ

jj
as j

r
Pj

j
. Now by putting

j
j
"!ik

j
, where k

j
is the (real) wavenumber associated with wave component j, it

is possible to write dA/dx"(LA/Lu)c
gj

(Lk
j
/Lx), where c

gj
"(Lu/Lk

j
) is the group

velocity. It then follows from equation (68) that

Q
jr
PQ

jj
"u*T

j
J(LA/Lu)u

j
c
gj

(Lk
j
/Lx)/(u*T

j
Ju

j
). (69)

Now equation (17) implies that the "rst group of terms in this result can be
expressed as u*T

j
J (LA/Lu)u

j
"!(8/u)¹M , where ¹M is the kinetic energy density.

Furthermore, the quantity 2¹M c
gj

is the wave energy #ow P
jj
, which is given by

equation (22). The net result is that equation (69) can be expressed in the very simple
form

Q
jr
Pi(Lk

j
/Lx). (70)

In the immediate vicinity of the cut-o! point (x"0) the two wavenumbers k
j
and k

r
will have the form k

j
(x)"k

0
!f (x) and k

r
(x)"k

0
#f (x), where k

0
is the repeated

wavenumber at cut-o! and f (x)P0 with d f (x)/dxPR as xP0. The symmetric
structure of the two wavenumbers around the limiting value k

0
is a direct

consequence of the fact that the function x (k) has a local maximum at k"k
0
, as

shown in Figure 6 (where the point k"k
0

occurs at c
K
"2). It now follows from

equations (24), (67) and (69) that in the vicinity to the left of the cut-o! point (x(0)
the dominant terms in the equations of motion take the form

d
dxA

b
j

b
r
B"A

0
f @ (x)/2f (x)

f @(x)/2f (x)
0 BA

b
j

b
r
B, (71)

where f @ (x)"df/dx. The general solution to this equation is

b
Lj
"a

1
Jf (x)#a

2
/Jf (x), b

Lr
"a

1
Jf (x)!a

2
/Jf (x), (72, 73)
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where a
1

and a
2

are constants of integration, and the subscript ¸ indicates that the
solution applies in the region to the left of the cut-o! point. Clearly, the wave
amplitudes are singular at the cut-o! point, where f (x)"0. This does not however
imply that the physical response of the waveguide is singular: it can be deduced that
the eigenvectors (when scaled in accordance with equation (28)) have the form

u
Lj
+[u

0
#iu@

0
f (x)]/Jf (x), u

Lr
+[u

0
!iu@

0
f (x)]/Jf (x), (74, 75)

where u
0

is the eigenvector associated with the cut-o! point k"k
0
, and u@

0
is the

derivative of this vector with respect to the eigenvalue j"!ik. Equations (72}75)
imply that the physical response of the waveguide, b

j
u
j
#b

r
u
r
, remains "nite at the

cut-o! point.
To the right of the cut-o! point (x'0) the two wave components j and r become

evanescent. In this case, the wavenumbers can be written as k
j
(x)"k

0
!if (x) and

k
r
(x)"k

0
#if (x), and equations (72)}(75) are replaced by

b
Rj
"c

1
Jf (x)#c

2
/Jf (x), b

Rr
"c

1
Jf (x)!c

2
/Jf (x), (76, 77)

u
Rj
+[u

0
!u@

0
f (x)]/Jf (x), u

Rr
+[u

0
#u@

0
f (x)]/Jf (x), (78, 79)

where c
1

and c
2

are constants. For the physical displacement b
j
u
j
#b

r
u
r

to be
continuous across the cut-o! point, it follows from equations (72}79) that a

1
"c

1
and a

2
"ic

2
, where it has been noted that u

0
and u@

0
are independent vectors. Now

equations (72}79) are valid in the immediate vicinity of the cut-o! point,
0)f (x))f

0
say, in which the wavenumbers change rapidly. To the right of the

cut-o! point, the amplitude of the evanescent term b
Rr

should become zero to
ensure that displacement of the system remains "nite with increasing x. If b

Rr
is

taken to be near zero at f (x)"f
0
, then it follows from equation (77) that c

2
/c

1
+f

0
.

Equations (72) and (73) then yield b
Lr
"!ib

Lj
at f (x)"f

0
, from which it can be

deduced that the cut-o! re#ection coe$cient is !i, so that the re#ected wave (b
Lr

) is
phase-shifted by !n/2 relative to the incident wave (b

Lj
).

An example of wave re#ection at a cut-o! cross-section is shown in Figure 11.
The case considered is a beam on an elastic foundation with the properties
described in section 3.3.2. The foundation sti!ness parameter c

K
is varied over the

range 1)5)c
K
)2)5, which covers the cut-o! point c

K
"2. The x-coordinate

shown on the "gure is such that cut-o! occurs at x"10, and the change in the
foundation sti!ness occurs predominantly over the region 7)5)x)12)5. It can be
seen from Figure 6 that the beam wavenumbers change gradually away from the
immediate vicinity of the cut-o! point, where a very rapid rate of change occurs;
this is re#ected in the behaviour of the propagating wave components which are
shown in Figure 11. Three signi"cant points which illustrate the foregoing theory
can be noted from Figure 11: (i) the incident and re#ected waves have di!erent
wavenumbers k

j
and k

r
, and hence di!erent wavelengths; (ii) the wave amplitudes

become in"nite at the cut-o!-point, but combine to give a "nite physical
displacement; (iii) the phase of the re#ection is !n/2. As a point of detail, Figure 11



Figure 11. Wave re#ection at a cut-o! cross-section in a beam. Upper curve*the real part of the
beam displacement; middle curve*the real part of the displacement arising from the re#ected wave;
lower curve*the real part of the displacement arising from the incident wave. All three curves are
shown to the same vertical scale.
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was constructed by integrating the beam equations of motion, equations (4}6),
backwards in space, under the initial condition of a decaying evanescent wave at
x"15. The propagating wave components were then extracted from the complete
response to the left of the cut-o! point.

A further example of wave re#ection at a cut-o! cross-section has been given by
Scott and Woodhouse [14]. The case considered was a plate strip of varying
curvature, which behaves in a similar way to the musical saw. It was shown that the
re#ection coe$cient at the cut-o! cross section is indeed !i, and this fact was used
in conjunction with the principle of phase closure to estimate the higher natural
frequencies of the structure.

5. CONCLUDING REMARKS

A method has been presented for the analysis of wave motion in an
inhomogeneous waveguide. The method is based on a "rst order representation of
the waveguide equations of motion in the form of equation (1). It has been shown that
the matrix A which appears in this equation satis"es equation (12) for a symmetric
system and equation (15) for a conservative system*these results are the counterpart
of the transfer matrix of a "nite section of the waveguide being symplectic and
K-unitary respectively. The kinetic energy density of a conservative system is given
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by equation (17), and wave energy #ow has been discussed in section 2.5 in the
context of the properties of the eigenvalues and eigenvectors of the matrix A.

The equations of motion are conveniently expressed in terms of wave amplitudes
via equation (24), and a perturbation solution of this form of the equations has been
presented in section 3.1. It has been shown that the approach may be applied to
deterministic, periodic, and random waveguides, and in most cases a "rst or second
order solution reveals the key features of the physical nature of the system
behaviour. Finally, the issue of wave re#ection at a cut-o! cross-section has been
addressed, and it has been shown that the phase of the re#ection coe$cient is
!n/2.

The method presented here can be applied to any inhomogeneous waveguide
which is governed by equation (1); this covers a much broader class of system than
the examples considered here, and future work could employ the method to
consider localization and cut-o! phenomena in various other structural and
acoustic systems. The present work has been concerned primarily with conservative
systems, although damping could readily be introduced into the matrix A which
appears in equation (1). The eigenvectors which appear in section 2.4 will then
represent damped wave motion, and some aspects of the energy #ow for this case
have been discussed in reference [17]. For light damping the main e!ect will be to
modify the eigenvalues which appear in the matrix K in equation (24), and this can
readily be incorporated in the perturbation scheme presented in section 3.1.
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